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Abstract Information-theoretic description of the electron probabilities and cur-
rents in molecules is extended to cover the complex amplitudes (wave functions) of
quantum mechanics. The classical information measures of Fisher and Shannon, due to
the probability/density distributions themselves, are supplemented by the nonclassical
terms generated by the wave-function phase or the associated probability current. The
previous one-electron development in such an entropic perspective on the molecular
electronic structure is extended to cover N-electron states by adopting the Harriman-
type framework of equidensity orbitals. This analysis emphasizes the phase part of
electronic states, which generates the probability-current density and the associated
non-classical entropy contributions, which allow one to distinguish the information
content of states generating the same electron density and differing in their current
composition. A complementary character of the Fisher and Shannon information mea-
sures is explored in the associated vertical (density-constrained) information princi-
ples, for determining the equilibrium state corresponding to the fixed ground-state
electron density. It is argued that the lowest “thermodynamic” state generally differs
from the true ground state of the system, by exhibiting the space-dependent phase
and hence also the non-vanishing probability current, linked to the system electron
distribution.
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1 Introduction

The classical Fisher (local) [1] or Shannon (global) [2] information descriptors of
the particle spatial distribution are determined solely by the probability aspect of the
complex wave function. The associated phase facet of the latter, which generates
the probability current, was shown to give rise to additional, nonclassical terms in the
quantum extensions of these gradient (Fisher) and logarithmic (Shannon) measures of
the information content in the complex quantum states, e.g., [3—8]. In the one-electron
system the densities of such phase-related information probes have been shown to be
proportional to the square of the local probability current [6] or the phase function itself
[7,8], respectively. These generalized, quantum measures allow one to distinguish the
amount of information in states exhibiting the same particle density and differing in
their phase (current) composition. '

This phase side of the molecular electronic structure reflects its “entropic” aspect,
which still remains largely unexplored. It has been recently demonstrated [8] for the
one-electron system that the lowest equilibrium state corresponding to the maximum
(quantum) entropy, which gives rise to the ground-state particle distribution, is char-
acterized by the space-dependent (local) phase linked to the ground-state probability
density itself. Therefore, it also exhibits a nonvanishing probability current, and thus
differs from the lowest eigenstate of the system Hamiltonian,

N
AV = VaeV) + [T + VeV ] = X 0+ F), (M

i=1

in which the particle current identically vanishes. Here, v(r) stands for the external
potential due to the system fixed nuclei, and F(N) combines the electron kinetic (T)
and repulsion (Vee) energy operators.

In the past such an “entropic” interpretation has been attributed to the density-con-
strained principles [9, 10] in the modern Density Functional Theory (DFT) [11-15], in
the so called vertical (entropic) variational searches performed for the specified elec-
tron density p, e.g., in Levy’s [10] constrained-search construction of the universal
part of the energy density functional,

Flp] = Tlp] + Veelp] = infy_, , (¥ [F|¥). 2)

In this variational procedure one searches over the wave functions ¥ (N) of N elec-
trons, which yield the given electron density p, symbolically denoted by ¥ — p,
and calculates the v-independent part F[p] of the density functional for the system
electronic energy,

Ey[p] = Flp]l+ Jv@®)p@)dr, 3

I Here A, A, and A denote the scalar quantity, row vector and a square/rectangular matrix, respectively.
The logarithm of the information measure is taken to an arbitrary but fixed base: log =log, corresponds to
information measured in bits (binary digits), while log = In expresses the amount of information in nats
(natural units): 1nat = 1.44 bits.
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as the lowest value (infimum) of the expectation value of ls(N ). When this search is
performed for the fixed ground-state density, it also implies the fixed value of the
system electronic energy, by the first Hohenberg-Kohn (HK) theorem [11] of DFT.
This feature is reminiscent of the familiar thermodynamic criterion for the equilibrium
state formulated in the entropy representation [16].

Therefore, by analogy to the maximum-entropy principle in the ordinary phenom-
enological thermodynamics [16], for constant internal energy, this DFT construction
has been also regarded as being “entropic” in character [9]. The familiar variational
principle for determining the ground state wave function, involving a search for the
minimum of the system energy, can be thus interpreted as the DFT optimization over all
admissible densities, in accordance with the second HK theorem [11], which involves
the “internal” (entropic) search over functions of N fermions that yield the current
trial density:

minyg <l1/ ’l:l‘ 11/> = min, Ey[p] = min, [f v(r)p(rydr +infy _, , <lI’ ‘f:‘ 11/>] . 4)

A similar idea of the space-dependent phase is adopted in constructions of anti-
symmetric states that generate the specified electron density [17-22]. It is required
to ensure both the orthonormality and completeness of the underlying orbital basis
for constructing the complete set of Slater determinants, which are capable of exactly
representing any N-electron state for the prescribed electron distribution. The par-
ticular choice of the equidensity orthonormal orbitals defining the Slater determinant
that yields the given electron density p(r) in such a vertical (density-constrained)
search has been proposed by Harriman [17] on the basis of the pioneering works by
Macke [18] and Gilbert [19]. His construction explicitly demonstrates the (pure-state)
N-representability of any (non-negative) distribution p (r) that integrates to N elec-
trons. Alternative constructions and extensions have also been suggested, e.g., [20-22].

In this analysis we focus on the use of this type of constructing the molecular wave
functions in probing the physical implications of the lowest equilibrium (“thermody-
namic”) state [8] in the molecular quantum mechanics. It results from the equivalent
principles of the maximum Shannon entropy or the minimum Fisher-information,
using the non-classical measures of the information content of the system wave func-
tion [7,8]. Although in the one-electron case the molecular (maximum-entropy) equi-
librium exhibits the same energy as the true ground state, it also involves the local,
real-valued phase function related to the probability distribution, and hence the non-
vanishing probability current. This is contrary to the non-degenerate eigenstate of the
Hamiltonian, for which the current identically vanishes. In what follows we extend
the previous one-electron analysis to the entropy/information equilibria in general
N-electron systems by adopting the equidensity orbital framework of the Harriman—
Zumbach—Maschke construction.

2 Harriman construction

Let us briefly outline the main idea behind the Gilbert-Harriman prescription for con-
structing the N -electron Slater determinant that yields the prescribed overall electron
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density p(r) = Xrpr(r) = Npi(r), from orbitals generating equal density contri-
butions {px(r) = p(r)/N}. As in the original presentation [17] we first assume, for
reasons of simplicity, the one-dimensional case of the nonnegative electron distribution
p(x) with ffooo p(x)dx = N.One then introduces the auxiliary, strictly monotonically
increasing function f(x), defined by the differential equation,

df(x) _2m
T N p(x), ©)

or the associated indefinite integral

2 i
s =2 [ oy, ©)
—00
It defines the single-particle states (orbitals), of the plane-wave type, each correspond-
ing to the same piece of the overall electron density {por(x) = p(x)/N},
ok (x) = pr (1) Zexp {ilkf () + ¢ ()]} = pe(x)Pexplidr (x)], (7

where ¢ (x) stands for an arbitrary real-valued phase function. One readily demon-
strates using Eq. (5) this basis set orthogonality and completeness [14,17], e.g.,

o o
/ P () pr(X)dx = / ei("*k/)f(x)—'ol(\f)dx
—0o0 —0oQ
oo o0
_ L / k) 0l g L / TG = 5 (k— k).
2 dx 2
50 —00

(®)

Therefore, the Slater determinants build from a given selection of N equidensity
orbitals,

{q/,q,k2 ,,,,, oy = (1/@) det [k, @ks -+ @hy ]+ ki £ k; for i;éj}, ©)

constitute the complete orthonormal system of N-particle functions, each correspond-
ing to the prescribed electron density p(x) = Zi|er(x)|> = Npx(x), capable of
representing any N-electron molecular state for this specific electron distribution.
These ideas have been extended into three dimensions [21] and molecular subsys-
tems [22]. The three-dimensional case is also based on the plane-wave type orbitals,

ok(r) = [p() /N1 ?explilk - f(r) + ¢ (]} = [p(r) /N1 *explidy ()]
{[p(r)/N1"?expli Fi (r)1} expli¢ (r)1= R (r) exp [ig ()], (10)
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wherek = (kx, ky, kz) and f = (f1, f2, f3) = f[p] with the density-related Jacobian
determinant,

af _ @n)’
ar N

p(r), (11)

reflecting the associated transformation between the volume elements:

9
df = dr—f.
ar

As explicitly proposed by Zumbach and Maschke [21]:

Jodx'p(x',y.2)

[ dx'p(x',y,2)

[ody [% dx' p(x, Y, 2)
[ dy [Co dx'p(x, Y 2)

z o0 00
27 ’ ’ R )
@)= 0 dz> [ dy [ dxp(x,y, ). (12)
—00 —00 —00

Therefore, this construction involves the transformation of the physical space into
itself: for any r = (x, y, z) € %> one defines the (invertible) density-dependent trans-
formation of r into the new vector f(r) € N3, with the orbital orthogonality relation
of Eq. (8) being now generalized into its three-dimensional analog:

Sr(x,y,2) =27

fo(y,z) =2m

o0 oo
/ o N gr(r)dr = / itk @) P ](Vr) dr
—0Q —0o0

o
_ 1 / RSOV
or
)
o

= oyt & gr — sk — k). (13)
T

—00

The overall phase factor exp[i® (r)] of these equidensity orbitals [see Eq. (10)]
involves the orbital-specific orthogonality (geometric) partexplik-f (r)] = expliFy(r)],
which enforces the independence of these one-particle states, and the “thermody-
namic” (physical) factor exp[i¢ (r)] due to an arbitrary phase ¢ (), common to all
orbitals,

Pi(r) = Fi(r) + ¢ (r). (14)
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The latter has to be determined from some additional variational principle, either
energetic [12,21] or entropic in character [8]. It introduces the entropic factor

N N
®(N) =[] explig )l = exp [ i D ¢ ) | = explig(N)], (15)
k=1 k=1
of the overall (symmetric) phase factor in the trial N-electron Slater determinant,

Wi ki, ky (V) = (1/V N!) det[@g,, ¥kys - - s Gry] = (N)

- (1/@) det[Re,. Riyr - .+ Ry 1&(N) = Re(N)®(N),
(16)

which generates the prescribed electron density p (r):

N N
(Wi o) i) = D loe 0 = o). b)Y =D 8@ —r. (17

i=1

This determinantal wave function also includes the symmetrical modulus part,

N 12
RV =] (pg")) , (18)

k=1

and the remaining determinant of N electrons involving the transformed “plane-
waves” {my, (r;) = exp(ik; - f(r;)}:

W (N) = (1/@) R(N)®D(N) det [mx, , 7y, - - » Ty |

— R(N)®(N) (1/@) |exp(ik; - f(r))| . (19)

Each equidensity orbital ¢ (r) generates the associated probability-current contri-
bution

h
Je@ = (oeli) | o) = LN)WN)—ﬂ[kV fO+Ve@].  (0)

the expectation value of the associated operator in the position representation:

hi
jr) = 3 — [6¢' =PV + V. 8G —1)].
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Hence, the overall current j(r) = (Wk(N)| J(r N) | (N )) in the Slater determmant
Uk (N), corresponding to the N-electron current operator J(r N) = Z 1=1J ,(r)

N
i) = (00 [ ) [0} = S 0 = P20 (Z V£ @) + vw)])

=1

h 1< h
—p() (ﬁ Zkz) VL0 +—p(Vhr)

=1

h
—p) [KY -f (1) + V()] @1

with K denoting the average “wave-number” (reduced momentum) vector of W (N)
and V - f = df;/9x + df2/9y + df3/0z standing for the divergence of the density-
dependent vector field f (r).

Therefore, both parts of the orbital phase-factor in Harriman’s construction con-
tribute to the probability current in such a representative trial Slater determinant. The
DFT search of Eq. (4), in spirit of the second Hohenberg—Kohn (HK) theorem [11], is
seen to involve the combined “external” (horizontal) variations of the system electron
distribution and the “internal” (vertical) variations [9] of trial orbitals for the current
(fixed) electron density.

In DFT this explicit construction of the antisymmetric wave functions of N elec-
trons corresponding to the prescribed electron density p () [Egs. (16) and (19)] has
been vital for solving the familiar N -representability problem of DFT. It has also been
used to establish reliable estimates for the density functionals and rigorous bounds
for parts of the exact ground state energy, e.g., [14]. In what follows we shall explore
the optimum phase functions {@(r)} resulting from the recently discussed Extreme
Information Principles (EIP), using the quantum-generalized information functionals,
appropriately modified to tackle the complex probability amplitudes (wave functions)
of quantum mechanics [6-8].

3 Information principles

We first observe that in the position representation the common phase factor does
not contribute to the expectation values of the multiplicative operators, e.g., of the
potential energy, but it becomes essential in determining the kinetic energy (quantum

Fisher information) term [6—8] due to the probability current. It also directly affects
the nonclassical (quantum) complement

Sndass'[p, ol =2/ pro@dr= fp(r)S"Cla”'(r)dr, (22)

of the classical Shannon entropy,
S [p] = — [ p(r) logp(r)dr = [ p@) S (r)dr., (23)
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in the quantum-generalized average entropy concept [7,8]:
S[W1= S[p, ®1 = SIS [p] + 8" [p, ¢l = [ p(r)S()dr, (24)

where the probability distribution p(r) = p(r)/N represents the “shape” factor of
the electron density. This nonclassical extension has been derived [7] by a natural
requirement that the relation between the classical Shannon and Fisher information
densities [7,8,23] should also hold for their nonclassical complements.

Consider the minimum of the quantum Fisher information in state ¥ (N),

N
8
=43 [ (Voo fdr = 257 1w = £ po)1 01
i=1

— fp(r) I:Iclas&(r) + Inclas&(r)] dr = Iclass. [P] + Inclas&[p, k, ¢]’ (25)

proportional to the system average kinetic energy

A n &
Tl = (U Tiw) = -3 / Vi, ()| dr. (26)
i=1

The latter consists of the “classical” density functional proposed by von Weizsicker
[24], depending solely upon the particle distribution,

2 2
Tclass.[p] — h_ Md,‘, (27)
8m p(r)

and the “non-classical”, phase/current contribution,

A2 N
nclass. _ . 2
T o, ¢l =7 — / p(r) l§=l (VIk; -f (r) + ¢ (r)])?dr, (28)
T[%] = T [p] + T"1%5 [p, ¢], 29)

related via Eq. (25) to the corresponding quantum information terms [6—8]:
I[¥] = 195 [p] + 1" [ p, 1. (30)
The condition of the extremum Fisher information,
SI[YAL/8¢ (r) = 31" [p, ¢1/0 (r) = 0, (3D

then determines the optimum phase that minimizes /[Wx] and nelass.[ p, ol

1 N
Pk(r) = —(ﬁ Zkl) fr)=—-K(E)-f@r). (32)

=1
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The optimum phase is thus determined by the average “wave-number” vector K
,,,,, ky = Yk, for which the density of nelass. exhibits the least structure
(“order "), i.e., the maximum indeterminacy (“disorder”), reflected by the highest value
of §"¢lass- The corresponding equidensity orbitals in this “thermodynamic” state,

ok, (r) = [p(r)/ N1 ?expliltk; — K) - £ ()]} = [p(r)/ N1 expli(8k;) - £ ()]},
(33)

determine the associated nonclassical contribution to the kinetic energy of electrons,

Tnclass.[p #] = h_2 / @ i(V[ﬁk, -f(r)])zdr
2m N =1

2 al
= > / p(@) D (VIsk; - f()])*dr, (34)
=1
due to finite probability current
h
jo = —p(r)( Zakz) Nf) = —p()SKY -f(r). (35)

The latter is seen to vanish only, when the corresponding deviation of the average
reduced momentum vanishes: 6K = 0.

Consider next the equilibrium entropy/information principles [7,8], corresponding
to the fixed ground-state electron density determined in the external search of Eq. (4):
p = po. It involves the energy-constrained search for the optimum wave function of
N-fermions, corresponding to the fixed external potential v due to the system nuclei
[see Eq. (2)]:

E[W(N) — pol = Eylpol = [ v(®)por)dr + Vee[pol + infy_ p, (¥| T |¥)
- fv(r)po(r)dr+infq/%po<l1/ F‘ w}. (36)

One observes the presence of the Levy universal functional F[p] [Eq. (2)] as the cru-
cial (entropic) part of this EPI. Notice that the external potential and electron-repulsion
energies are fixed by the frozen density constraint, so that the optimum state marks
the infimum of the quantum Fisher measure of the information content in the optimum
wave function.

Let us first examine the one-determinant approximation of the exact ground-state
wave function, e.g., in the Kohn-Sham [7] theory, in which one assumes Wo(N) =
¥ [N, v] = Yk (N). In this single-determinant case the optimum function ¥, (N; ¢o)
results from the following Fisher EPI:

infy oo [[¥] = 1995 [ po] 4 infy s o, 1" [ po, k, ¢] = Wiy (N ¢0).  (37)
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In the Harriman-type construction of the Fisher measure of information the optimum
ground state is thus determined by the optimum values of the “wave-number” vectors
k=ko= {k?} and the associated optimum phase function [Eq. (32)]:

1 N
¢(l‘)=¢0(r)=—(ﬁ Zk?) for) = —K(ko) -for). fo=Flol. (38)

=1

Together they uniquely specify N singly-occupied spin-orbitals of the “thermody-
namic” Slater determinant Yy, (r; ¢p) = ¥ O (7). The minimum Fisher-information
principle of Eq. (36) thus involves a search for the optimum equidensity orbitals of
N electrons in the ground-state electron distribution pg, determined by their optimum
“wave-number” vectors ko and the associated phase of Eq. (38).

As argued elsewhere [7,8] both the classical and non-classical parts of the densities
per electron of the quantum Fisher and Shannon information measures [Egs. (22-25)]
are mutually related:

1955 (r) = [VInp(r)]* = [VS““*S(r)]* and

Inclass.(r) — (2m1(r)

hip(r)

2
) = [VSnClaSS'(I')]Z. (39)

One further observes that for the fixed electron distribution in Eq. (36) only the nonclas-
sical components depend upon the “wave-number” vectors k and the phase function
¢ (r), which together determine the resultant phase in Harriman’s construction, to be
optimized in the associated entropic principle. This infimum of the Fisher measure for
p = po implies the least average gradients of the wave function orbitals [see Eq. (25)],
and hence their lowest degree of structure (order). This generates the highest admissi-
ble degree of the wave-function indeterminacy (disorder), as marked by the supremum
of the quantum Shannon entropy:

SUPy s oo SIPT = S5 [po] + supy_, 5, S"“ [po, K, ¢1 = Wiy (N; d). (40)

Therefore, the two generalized measures of the information content in complex
wave-functions of the Harriman-type are complementary in character: the ground-
state density/energy constrained EPI of the lowest quantum Fisher information is syn-
onymous with the related constrained EPI of the highest quantum Shannon entropy.
This is reminiscent of the complementary equilibrium criteria of the minimum energy
and maximum entropy in phenomenological thermodynamics [16].

Finally, let us briefly examine a general case of a trial wave function ¥y(N) of
an N-electron molecular system, corresponding to the prescribed electron density
p = po. In the pure-state representation the ground state ¥y(/N) can be expanded
into the complete set of N-electron determinants of Eqgs. (16) and (19), containing a
common modulus (density) factor of Eq. (18),
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N 1/2
RoN) =[] (p 0;7‘)) , (@1)
k=1

and the phase factor @ (N) of Eq. (15), in the continuous Configuration Interaction
(CI) type expansion,

Y (N) =/ Co(k) ¥ (N)dk. (42)

The expectation value (A)C! of the physical quantity A represented by operator Ais
then given by the familiar expression

<A>CI=//cg(k)co (K') A(k. K') dk dK’, A(k,k/)=<wk‘A‘w,;>. (43)

The linear variational parameters {C (k) = (¥x| W)} also generate to the conditional
probabilities

{Po(Wi|¥0) = |Co®)I* = Po(k)}, [ Po(k)dk =1, (44)

of the density constrained determinants in the ensemble defined by the density operator

Do(N) = / dk V) Po(Wic %) (Wl. 45)

The representative ensemble-average values of the physical properties in such a mixed
CI state then read ACL = [ Py(k)A(k, k) dKk, e.g.,

p = po S Po(k)dk = po, JE@) = J Po)jic(r)dk,
K = | Py(k)K(K)dk, b (r) = =K - fo (). etc. (46)

4 Conclusion

It has been argued, using the N-electron Harriman—Zumbach—Maschke construction
of the antisymmetric wave function yielding the prescribed electron density, that the
optimum equilibrium (“thermodynamic”) state of N electrons, resulting from the com-
plementary Fisher or Shannon EPI principles, generally differs from the (nondegen-
erate) ground state of the electronic Schrodinger equation, the lowest eigenstate of the
system electronic Hamiltonian, in which the probability current identically vanishes.
Indeed, for a variational density p the optimum (position-dependent) phases of the
Harriman equidensity orbitals in such an equilibrium state generally imply the non-
vanishing phase-gradients of the equidensity orbitals, and hence also a presence of the
finite probability current of the system N electrons, for the fixed electron distribution,
i.e., the conserved electronic energy. This qualitatively confirms the main conclusion
following from previous one-electron analysis [8]. For a more detailed exploration of
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the molecular equilibria using the nonclassical information measures the reader is also
referred to a recent analysis [25].

The reduced momenta k, which determine the phase factors of the equidensity
orbitals, provide the continuous state-variables generating the crucial density of deter-
minantal states, which is essential in any adequate, thermodynamic-like perspective
on the vertical (fixed-density) variations of the system wavefunction.

Notice, however, that for the exact density p = pg of the nondegenerate ground-
state the best single-determinant Wy, (N ; ¢o) approximation of the optimum thermody-
namic state should recover the Slater determinant of the Kohn-Sham [12] quality. Then
for K = K and hence the vanishing current one indeed realistically approximates
the true ground-state of the N-electron system in question: ¥ [N, v] = Y, (N; ¢o).
This is in accordance with the HK theorem, that in such a case the electron density
uniquely identifies the system ground-state.

One further observes, that for the exact ground-state density p = pp, i.e.,
f =flpo]l = fo.k = Ko, and hence K" = K, the associated displacement § K ¢!
in the average reduced momentum identically vanishes in the equilibrium state, for
¢ = ¢o, SKC' = 0. This implies an exactly vanishing probability current of Eq. (33),
and hence the exact ground state of the system in question: ¥(N) = ¥ [N, v]. This
prediction again follows the first HK theorem, that the exact electron distribution
of the nondegenerate ground-state uniquely determines the system wave function:
Yo = Wolpol.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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